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Close to Close Packing
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For various lattice gas models with nearest neighbor exclusion (and, in one
case, second-nearest neighbor exclusion as well), we obtain lower bounds on m,
the average number of particles on the nonexcluded lattice sites closest to a
given particle. They are all of the form m�mcp�1&const } (Ncp�N&1), where N
is the number of occupied sites, mcp is the value of m at close packing, and Ncp

is the value of N at close packing. An analogous result exists for hard disks in
the plane.
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1. INTRODUCTION

In a classic piece of work, (3) L. Fejes To� th gave a proof that the highest-
density packing of non-overlapping disks in a plane is, as one expects
intuitively, the hexagonal close packing. His ideas were used by the present
authors(2) to obtain information about the packing of such disks at densities
slightly below the close-packing density. Defining m(r) to be the average
number of disks whose centres lie within a distance r of a given disk, we
showed that m(r) satisfies an inequality

1�
m(r)

6
�1&

A�Acp&1
(r2�a2)&1

&= if 1<r�a<
1
2

cosec
?
7

=1.15... (1)

Here a is the diameter of the disks, A is the area of the (hexagonal) region
available to the disks, Acp= 1

2 - 3Na2
r0.866Na2 is the value of A at hexagonal
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close packing, N is the number of disks, and = denotes a correction term
which is much smaller than the term shown if A�a2>>1 and r�a&1<<1.

This result can be used, for example, to obtain upper and lower
bounds on the energy of a system of hard disks with a sufficiently short-
range square-shoulder or square-well interaction

+� (0�r<a)

U(r)={U0 (a�r<b) (2)

0 (b�r)

where U0 and b are constants, with a<b< 1
2a cosec(?�7). These bounds

provide an upper bound on the error in the formula for the mean energy
per particle given by thermodynamic perturbation theory; this upper
bound is proportional to the deviation of the density from the close-packing
density.

In view of the recent mathematical progress(1) on the three-dimen-
sional analogue of Fejes To� th's problem (often called Kepler's conjecture),
one may hope that a three-dimensional analogue of the inequality (1) may
some day be proven. In the present note, however, our ambitions are much
more modest: to prove some results analogous to (1) for lattice gases with
nearest neighbor exclusion, both in two and three dimensions. We shall
consider (though not in that order) a square lattice with nearest neighbor
exclusion, a triangular lattice with nearest neighbor exclusion, a cubic lattice
with nearest neighbor exclusion, and a cubic lattice with both nearest- and
second-nearest neighbor exclusion. In all the cases considered the result we
obtain can be written in the form

1�
m

mcp
�1&const } \Ncp

N
&1+ (3)

where N is the number of particles (i.e., occupied lattice sites), m is the
average number of particles at the nonexcluded lattice sites nearest to a
given particle, and Ncp , mcp are the values of N, m at close packing. Except
in the case of the triangular lattice, the constant is 1. Since the fractions
A�Acp in (1) and Ncp�N in (3) are equal in the thermodynamic limit, there
is a close analogy between (1) and (3).

2. PLANE SQUARE LATTICE

Consider a plane square lattice with L sites, N of which are occupied,
subject to nearest neighbor exclusion. We denote by m the average number
of second-nearest neighbors per particle (the number of nearest neighbors
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is, of course, zero). To avoid edge effects we take the underlying space to
be a torus and give the lattice an even number of sites along each axis, so
that a perfect close-packing arrangement is possible.

Let p0 , p1 , p2 denote, respectively, the number of plaquettes with 0, 1,
and 2 corners occupied; because of the nearest neighbor exclusion rule,
p2 is the number of plaquettes with two opposite corners occupied and the
other two unoccupied. The number of second-nearest neighbor pairs is then

p2= 1
2 mN (4)

by the definition of m.
Since, on this lattice, the total number of plaquettes is equal to the

number of sites we have

p0+ p1+ p2=L (5)

Also, since each site meets four plaquettes, the total number of occupied
corners of plaquettes is equal to four times the number of occupied sites,
and hence

p1+2p2=4N (6)

At close packing, all the plaquettes have two occupied corners, so that
p0=p1=0, p2=L. From the above equations, the values of N and m at
close packing are

Ncp= 1
2 L (7)

mcp=4 (8)

Evidently mcp is the coordination number of the occupied sublattice. From
(4) and (6) we find

(4&m) N=p1 (9)

and, from (7), (5) and (6),

Ncp&N= 1
2 L&N= 1

2 p0+ 1
4 p1 (10)

so that

0�(4&m) N�4(Ncp&N ) (11)
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This gives, as our analogue of (1) for the square lattice with nearest
neighbor exclusion,

1�
m
4

�1&(Ncp�N&1) (12)

3. SIMPLE CUBIC LATTICE, NEAREST NEIGHBOR EXCLUSION

Now consider a simple cubic lattice with L sites, N of which are
occupied, subject to nearest neighbor exclusion. As before, we denote by m
the average number of second-nearest neighbors per particle and take the
underlying space to be a (three-dimensional) torus. In the close-packed
arrangement, the occupied sites form a face-centred cubic lattice.

As before, let p0 , p1 , p2 denote, respectively, the number of plaquettes
with 0, 1, and 2 corners occupied; because of the nearest neighbor exclu-
sion rule, p2 is the number of plaquettes with two opposite corners
occupied and the other two unoccupied. The number of second-nearest
neighbor pairs is again given by (4), but for this lattice, the total number
of plaquettes is three times the number of sites so that

p0+p1+p2=3L (13)

Also, since each site meets 12 plaquettes, the analogue of (6) is

p1+2p2=12N (14)

At close packing, all the plaquettes have two occupied corners, so that
p0=p1=0, p2=L. The values of N and m at close packing are

Ncp= 1
2 L (15)

mcp=12 (16)

From (4) and (14) we find

(12&m) N=p1 (17)

and from (15), (13) and (14),

Ncp&N= 1
2 L&N= 1

6 p0+ 1
12 p1 (18)

so that

0�(12&m) N�12(Ncp&N ) (19)
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This gives, as our analogue of (1) for the cubic lattice with nearest
neighbor exclusion,

1�
m
12

�1&(Ncp �N&1) (20)

4. SIMPLE CUBIC LATTICE, NEAREST- AND
SECOND-NEAREST NEIGHBOR EFXCLUSION

A similar result also exists for the same lattice but with exclusion on
both nearest and second-nearest neighbor sites. In this case the occupied
sites in the closest-packed configuration form a body-centred cubic lattice.

This time, instead of plaquettes, we consider the small cubes whose
corners are nearest neighbor lattice sites. Let c0 , c1 , c2 denote, respectively,
the number of such cubes with 0, 1, and 2 corners occupied; because of the
exclusion rule, c2 is exactly the number of small cubes with two opposite
corners occupied and the other two unoccupied. Let m$ denote the average
number of second-nearest neighbors of a given occupied site, so that the
number of second-nearest neighbor pairs is given by

c2= 1
2 m$N (21)

Since the total number of small cubes is equal to the number of sites
we have

c0+c1+c2=L (22)

Also, since each site meets 8 small cubes, the analogue of (6) is now

c1+2c2=8N (23)

At close packing, all the small cubes have two occupied corners, so
that c0=c1=0, c2=L. From the above equations, the values of N and m
at close packing are

Ncp= 1
4 L (24)

m$cp=8 (25)

From (21) and (23) we find

(8&m$) N=c1 (26)
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and from (24), (22) and (23),

Ncp&N= 1
4 L&N= 1

4 c0+ 1
8 c1 (27)

so that

0�(8&m$) N�8(Ncp&N ) (28)

This gives, as our analogue of (1) for the cubic lattice with nearest- and
second-nearest neighbor exclusion,

1�
m$
8

�1&(Ncp�N&1) (29)

5. TRIANGULAR LATTICE

To obtain an inequality for the triangular lattice with nearest neighbor
exclusion, a slightly more complicated argument is necessary. This time the
plaquettes are triangles. Using the same notation p0 , p1 , p2 as in Section 2,
we see that p2=0 because of the exclusion rule, so that the analogues of
(5), (7) and (6) are

p0+p1=2L=6Ncp (30)

p1=6N (31)

from which it follows that

p0=6(Ncp&N ) (32)

Let us define also s0 , s1 , s2 as the number of second-nearest neighbor pairs
of sites with, respectively, neither site occupied, one site occupied, or both
occupied. They too satisfy relations analogous to (4), (5) and (6); the ones
we shall need are

s1+2s2=6N (33)

s2= 1
2 mN (34)

from which it follows that

s1=(6&m) N (35)

For every second-nearest pair of sites, one of which is occupied and
the other occupied, there is one empty plaquette and one singly occupied
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plaquette. Since each empty plaquette can belong in this way to at most
three second-nearest pairs of this type, we have

s1�3p0 (36)

From (31), (35) and (36) we find

(6&m) N�18(Ncp&N ) (37)

so that the analogue of (1) for the triangular lattice with nearest neighbor
exclusion is (since the mcp for this lattice is 6)

1�
m
6

�1&3(Ncp �N&1) (38)
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